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Model, residual and parameter estimation

Model, residual and parameter estimation
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Model, residual and parameter estimation Augmented catenary model
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Figure: Standard and y-augmented catenary [Drupt et al., 2022] of length L
hanging between “P 4 and “Pg in their respective planes.

On the relevance of catenary-based models for underwater tethered robots 15/12/23 8/20



(Y- ERNEET FEVIET I ETET N TS T Bl Augmented catenary model

Degrees of freedom

O’y X'Y Ogﬁv X(‘)7

— catenary augmented with v d.o.f.
— catenary augmented with 6 and v d.o.f.

Figure: v and f~y-augmented catenary of length L hanging between “P,4 and “Pjg
in P,.
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Model, residual and parameter estimation Discretization and residual

Curvilinear discretization

Figure: Normal discretization. Figure: Curvilinear discretization.
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On the relevance of catenary-based models for underwater tethered robots 15/12/23 9/20



Model, residual and parameter estimation Discretization and residual

Curvilinear discretization

Figure: Normal discretization. Figure: Curvilinear discretization.

measured
) ——
YPr = ("X:,"YE, " ZE) with x € (m,v,~,0v) and k € {0,...,n}

On the relevance of catenary-based models for underwater tethered robots 15/12/23 9/20



Model, residual and parameter estimation Discretization and residual

Curvilinear discretization

Figure: Normal discretization. Figure: Curvilinear discretization.

vertical
: -
YPr = ("X:,"YE, " ZE) with x € (m,v,~,0v) and k € {0,...,n}

On the relevance of catenary-based models for underwater tethered robots 15/12/23 9/20



Model, residual and parameter estimation Discretization and residual
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Figure: Normal discretization. Figure: Curvilinear discretization.

~-augmented
. ——
YPr = ("XE, VY, ZE) with x € (m,v,~,0v) and k € {0, ..., n}

On the relevance of catenary-based models for underwater tethered robots 15/12/23 9/20
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Figure: Normal discretization. Figure: Curvilinear discretization.
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Model, residual and parameter estimation Discretization and residual
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Model, residual and parameter estimation Parameters estimation

Parameters estimation
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Model, residual and parameter estimation Parameters estimation

Parameters estimation
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Experiments
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Presentation
Candidate cables
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Figure: Pictures of the different cables used in the experiments: (1) coaxial cable;
(2) four pairs ethernet cable; (3) two pairs ethernet cable; (4) floating rope; (5)
rope; (6) weighted rope; (7) steel chain; (8) elastic rope.
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Experimental setup

Figure: Picture of the robot and the cable while doing experiments.

The whole system is tracked at 100 Hz with a five cameras Qualisys motion
capture system.
Visual markers are on the robot and the cables spaced out by 20 cm.
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Description of the experiments

Three experimental parameters:

direction of motion: surge or sway;
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Description of the experiments

Three experimental parameters:
direction of motion: surge or sway;
speed of the robot: 0.6ms~! or 0.3ms™1;

initial distance between attachment points: 1.5m or 2.0 m.
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Figure: View of the trajectories for cable 6.
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General results
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Figure: Accuracy of the models for each cable.
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Cable specific results

Experimental parameters  Box plot
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Table: Accuracy of the models for cable 3.
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Figure: View of the trajectories for cable 6.
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Single sequence results
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Conclusion

m The augmented catenary provides a better estimation for all cables
compared to the standard catenary;
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Conclusion

m The augmented catenary provides a better estimation for all cables
compared to the standard catenary;
m Catenary models are most relevant for:
m Cables that are flexible (no plastic deformations);
m Cables that are adequately heavy (cable 6 weights 0.39Nm~1 in
water);
m Slow motion and low dynamics (for best accuracy).
m Cables that fit the catenary model have the most gains from our
augmentations;

m The accuracy of the augmented catenary model for duly chosen cables
can be as low as a centimeter (median, cable 6).

Current work: proposing a way to describe the dynamics of the new
degrees of freedom.
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