

Reliable underwater SLAM using seabed roughness

Simon Rohou, Michel Legris

15th December 2023, Paris

Section 2

Motivations

Simultaneous Localization and Mapping

- **come back** to a previous pose and **recognize** the environment
- problem: loop closure detection

Simultaneous Localization and Mapping

- **come back** to a previous pose and **recognize** the environment
- problem: loop closure detection

Simultaneous Localization and Mapping

The problem of false loop detections in similar environments.

In Versailles' gardens: similar places. Did we really come back to a previous place?

Underwater robot localization

An underwater robot performing a loop during an exploration:

Robot's trajectory is projected in blue on the seabed.

Underwater robot localization

An underwater robot performing a loop during an exploration:

Robot's trajectory is projected in blue on the seabed.

Underwater robot localization

Typical path involving numerous loops:

Underwater robot performing a survey with a multibeam sonar.

Reliability of loops

Can we prove that we revisited the same place only from observations?

.. they are wrong!

Uncertainties: detection vs verification

Uncertain trajectories enclosed by tubes.

Only one loop can be verified - at least two feasible loops are detected

Section 3

Looped trajectories

- robot position: $\mathbf{p} = (x, y)^{\mathsf{T}} \in \mathbb{R}^2$
- ▶ 2D robot trajectory: $\mathbf{p}(t) : \mathbb{R} \to \mathbb{R}^2$, $t \in [t_0, t_f]$
- ▶ looped trajectory ⇔ trajectory that crosses itself
 ▶ p(t₁) = p(t₂), t₁ ≠ t₂
 ▶ 1 loop ⇔ 1 t-pair (t₁, t₂)

- robot position: $\mathbf{p} = (x, y)^{\mathsf{T}} \in \mathbb{R}^2$
- ▶ 2D robot trajectory: $\mathbf{p}(t) : \mathbb{R} \to \mathbb{R}^2$, $t \in [t_0, t_f]$
- looped trajectory ⇔ trajectory that crosses itself
 p(t₁) = p(t₂), t₁ ≠ t₂
 1 loop ⇔ 1 t-pair (t₁, t₂)

- robot position: $\mathbf{p} = (x, y)^{\mathsf{T}} \in \mathbb{R}^2$
- ▶ 2D robot trajectory: $\mathbf{p}(t) : \mathbb{R} \to \mathbb{R}^2$, $t \in [t_0, t_f]$
- looped trajectory ⇔ trajectory that crosses itself
 p(t₁) = p(t₂), t₁ ≠ t₂
 1 loop ⇔ 1 t-pair (t₁, t₂)

- robot position: $\mathbf{p} = (x, y)^{\mathsf{T}} \in \mathbb{R}^2$
- ▶ 2D robot trajectory: $\mathbf{p}(t) : \mathbb{R} \to \mathbb{R}^2$, $t \in [t_0, t_f]$
- looped trajectory ⇔ trajectory that crosses itself
 p(t₁) = p(t₂), t₁ ≠ t₂
 1 loop ⇔ 1 t-pair (t₁, t₂)

- *t*-plane \Leftrightarrow all feasible *t*-pairs = $[t_0, t_f]^2$
- ▶ loop set \mathbb{T}^* : ▶ $\mathbb{T}^* = \{(t_1, t_2) \in [t_0, t_f]^2 \mid \mathbf{p}(t_1) = \mathbf{p}(t_2), t_1 < t_2\}$

Computing loops from robot sensors

Context: robot trajectory $\mathbf{p}(t)$ cannot be directly sensed. Computation from speed measurements:

$$\mathbf{p}(t) = \int_{t_0}^t \mathbf{v}(\tau) d\tau + \mathbf{p}_0, \tag{1}$$

with $\mathbf{v}(t) \in \mathbb{R}^2$: robot velocity vector at time $t \in [t_0, t_f]$.

Computing loops from robot sensors

Context: robot trajectory $\mathbf{p}(t)$ cannot be directly sensed. Computation from speed measurements:

$$\mathbf{p}(t) = \int_{t_0}^t \mathbf{v}(\tau) d\tau + \mathbf{p}_0, \tag{1}$$

with $\mathbf{v}(t) \in \mathbb{R}^2$: robot velocity vector at time $t \in [t_0, t_f]$.

Loop-set from velocity:

$$\mathbb{T}^* = \{(t_1, t_2) \in [t_0, t_f]^2 \mid \mathbf{p}(t_1) = \mathbf{p}(t_2), t_1 < t_2\}$$
(2)
$$= \{(t_1, t_2) \in [t_0, t_f]^2 \mid \int_{t_1}^{t_2} \mathbf{v}(\tau) d\tau = \mathbf{0}, t_1 < t_2\}$$
(3)

Section 4

Loop detection

Tubes: sets of trajectories

$$\begin{aligned} & [x](\cdot), \text{ interval of trajectories } [x^-(\cdot), x^+(\cdot)] \\ & \quad \text{ such that } \forall t \in \mathbb{R}, \ x^-(t) \leqslant x^+(t) \end{aligned}$$

Tube $[x](\cdot)$ enclosing an uncertain trajectory $x^*(\cdot)$

Actual loop-set \mathbb{T}^* (error free):

$$\mathbb{T}^* = \left\{ (t_1, t_2) \mid \int_{t_1}^{t_2} \mathbf{v}^*(\tau) d\tau = \mathbf{0} \right\}$$
(4)

Actual loop-set \mathbb{T}^* (error free):

$$\mathbb{T}^* = \left\{ (t_1, t_2) \mid \int_{t_1}^{t_2} \mathbf{v}^*(\tau) d\tau = \mathbf{0} \right\}$$
(4)

Bounded-error context, assuming $\mathbf{v}^*(\cdot) \in [\mathbf{v}](\cdot)$:

$$\mathbb{T} = \left\{ (t_1, t_2) \mid \exists \mathbf{v}(\cdot) \in [\mathbf{v}](\cdot) , \int_{t_1}^{t_2} \mathbf{v}(\tau) d\tau = \mathbf{0} \right\}$$
(5)

Actual loop-set \mathbb{T}^* (error free):

$$\mathbb{T}^* = \left\{ (t_1, t_2) \mid \int_{t_1}^{t_2} \mathbf{v}^*(\tau) d\tau = \mathbf{0} \right\}$$
(4)

Bounded-error context, assuming $\mathbf{v}^*(\cdot) \in [\mathbf{v}](\cdot)$:

$$\mathbb{T} = \left\{ (t_1, t_2) \mid \exists \mathbf{v}(\cdot) \in [\mathbf{v}](\cdot) , \int_{t_1}^{t_2} \mathbf{v}(\tau) d\tau = \mathbf{0} \right\}$$
(5)

Set-membership approach:

$$\mathbb{T}^* \subset \mathbb{T} \subset [t_0, t_f]^2 \tag{6}$$

Loop detection Inclusion function

Simplification:

defining the actual but unknown function $\mathbf{f}^*: \mathbb{R}^2 \rightarrow \mathbb{R}^2$

$$\mathbf{f}^{*}(t_{1}, t_{2}) = \int_{t_{1}}^{t_{2}} \mathbf{v}^{*}(\tau) d\tau$$
(7)

Loop detection Inclusion function

Simplification:

defining the actual but unknown function $\mathbf{f}^*: \mathbb{R}^2 \rightarrow \mathbb{R}^2$

$$\mathbf{f}^{*}(t_{1}, t_{2}) = \int_{t_{1}}^{t_{2}} \mathbf{v}^{*}(\tau) d\tau$$
(7)

Assessed knowledge: $[\mathbf{f}]: \mathbb{R}^2 \to \mathbb{IR}^2 \text{ is an interval function of } \mathbf{f}^*:$

$$\mathbf{f}^{*}(t_{1}, t_{2}) \in [\mathbf{f}](t_{1}, t_{2}) = \int_{t_{1}}^{t_{2}} [\mathbf{v}](\tau) d\tau$$
(8)

Loop detection Integral of tubes

Definition: the integral of a tube $[x](\cdot) = [x^-, x^+]$ is an interval:

$$\int_{a}^{b} [x](\tau)d\tau = \left\{\int_{a}^{b} x(\tau)d\tau \mid x(\cdot) \in [x](\cdot)\right\} = \left[\int_{a}^{b} x^{-}(\tau)d\tau, \int_{a}^{b} x^{+}(\tau)d\tau\right]$$
[Aubry2013]

blue area: lower bound of the tube's integral

Loop detection Integral of tubes

Definition: the integral of a tube $[x](\cdot) = [x^-, x^+]$ is an interval:

$$\int_{a}^{b} [x](\tau)d\tau = \left\{\int_{a}^{b} x(\tau)d\tau \mid x(\cdot) \in [x](\cdot)\right\} = \left[\int_{a}^{b} x^{-}(\tau)d\tau, \int_{a}^{b} x^{+}(\tau)d\tau\right]$$
[Aubry2013]

orange area: upper bound of the tube's integral

Reliable approximation of a loop set

Undeniable looped trajectory

Reliable approximation of a loop set

Doubtful looped trajectory

Reliable approximation of a loop set

Doubtful looped trajectory

Reliable approximation of a loop set

$$\forall \mathbf{f} \in [\mathbf{f}], \exists \mathbf{t} \in \mathbb{T}_i \mid \mathbf{f}(\mathbf{t}) = \mathbf{0} \implies \underbrace{\exists \mathbf{t} \in \mathbb{T}_i \mid \mathbf{f}^*(\mathbf{t}) = \mathbf{0}}_{\text{loop existence proof}} \qquad (9)$$

Simon Rohou, Michel Legris

15/12/2023 (GT2) 18 / 47

Reliable approximation of a loop set

Doubtful looped trajectory

Proving the existence of loops in robot trajectories Simon Rohou, Peter Franek, Clément Aubry, Luc Jaulin The International Journal of Robotics Research, 2018

Section 5

Application (loops detections/proofs)

Application (loops detections/proofs) Redermor mission

2 hours experimental mission in Brittany (France)

The Redermor Autonomous Underwater Vehicle (AUV)

Simon Rohou, Michel Legris
Application (loops detections/proofs) Redermor mission

Tube of proprioceptive measurements $[\mathbf{v}](\cdot)$:

Application (loops detections/proofs) Guaranteed computation of the trajectory

2d trace of Redermor AUV

Application (loops detections/proofs)

t-plane of the mission: $\mathbb{T} = \{(t_1, t_2) \mid \mathbf{0} \in [\mathbf{f}](t_1, t_2), t_1 < t_2\}$

t-plane corresponding to Redermor's mission

Simon Rohou, Michel Legris

Application (loops detections/proofs) Overview and results

Application (loops detections/proofs) Overview and results

Application (loops detections/proofs) Overview and results

Loop proof number

Without uncertainties:

$$\lambda^* = \# \big\{ \mathbf{t} \mid \mathbf{f}^*(\mathbf{t}) = \mathbf{0}, t_1 < t_2 \big\}$$

Application (loops detections/proofs) Overview and results

Loop proof number

Without uncertainties:

$$\lambda^* = \# \big\{ \mathbf{t} \mid \mathbf{f}^*(\mathbf{t}) = \mathbf{0}, t_1 < t_2 \big\}$$

Results:

Newton operator test: $\lambda_{\mathcal{N}} = 14$

Application (loops detections/proofs) Overview and results

Loop proof number

Without uncertainties:

$$\lambda^* = \# \big\{ \mathbf{t} \mid \mathbf{f}^*(\mathbf{t}) = \mathbf{0}, t_1 < t_2 \big\}$$

Results:

Newton operator test: $\lambda_{\mathcal{N}} = 14$ Topological degree test: $\lambda_{\mathcal{T}} = 24$ Application (loops detections/proofs) Overview and results

Loop proof number

Without uncertainties:

$$\lambda^* = \# \big\{ \mathbf{t} \mid \mathbf{f}^*(\mathbf{t}) = \mathbf{0}, t_1 < t_2 \big\}$$

Results:

Newton operator test: $\lambda_{\mathcal{N}} = 14$ Topological degree test: $\lambda_{\mathcal{T}} = 24$ Truth: $\lambda^* = 24$ Reliable underwater SLAM using seabed roughness

Application (loops detections/proofs) Another experiment (*Daurade* AUV)

Reliable underwater SLAM using seabed roughness

Application (loops detections/proofs) Another experiment (Daurade AUV)

Simon Rohou, Michel Legris

Reliable underwater SLAM using seabed roughness

Application (loops detections/proofs) Another experiment (*Daurade* AUV)

Now that loops are proved with proprioceptive measurements...

... it remains to perform localization by adding environment perceptions.

Section 8

Towards SLAM

Experiment (3rd December, 2014)

- Daurade: Autonomous Underwater Vehicle (AUV)
- weight: 1010kg length: 5m max depth: 300m

Special thanks to DGA-TN Brest (formerly GESMA)

Simon Rohou, Michel Legris

Experiment (3rd December, 2014)

- ▶ 3.5 hours experimental mission
- ► *Rade de Brest*, Brittany

Location: Baie de Roscanvel - Credits: Shom

Towards SLAM Experiment (Boustrophédon)

Multi-boustrophedon pattern (actual trajectory followed by Daurade)

Actual positioning drift (40m)

Current Kalman algorithms, from the constructor, are able to filter the trajectory with GNSS fixes (when surfacing). \rightarrow up to 40m of positioning drift after \sim 1h of deadreckoning

Blue: actual trajectory corrected in forward filtering. Red: GNSS positions.

Simon Rohou, Michel Legris

SLAM approach: observations of the seabed

Use of a Multi-Beam Echo-Sounder (MBES)

- accurate sensing of the seabed
- main usage: building maps (Digital Elevation Models)

Example of one acquisition track, during the Daurade mission.

SLAM approach: observations of the seabed

Goal: use bathymetric information for localization purposes

Crossed acquisition tracks (looped trajectories), in case of positioning drift.

SLAM approach: observations of the seabed

Goal: use bathymetric information for localization purposes

Crossed acquisition tracks (looped trajectories), in case of positioning drift.

SLAM on seabed roughness (micro-relief)

Which information?

- ▶ low frequencies: sensitive to tide effects, or flat environments
- high frequencies: artefacts related to electronic noise (borders of the tracks)

 \rightarrow approach based on seafloor roughness, such as ripples, grooves, small rocks...

Left: no correction. Right: the two racks match.

Bathymetric decomposition

- separate resolution scales
- keep only those that are reliable and descriptive

\rightarrow use of multilevel B-Splines

Seungyong Lee, George Wolberg, and Sung Yong Shin, IEEE Transactions On Vizualisation And Computer Graphics, Vol. 3, No. 3, July-Sept 1997

Application to bathymetry:

Towards SLAM Multilevel B-Splines on bathymetric data

Simon Rohou, Michel Legris

Towards SLAM Global correlation between two racks (ex: n17 and n8)

Each rack is broken down into cells of 64×64 pixels (32m by 32m)

These figures are obtained by correlation of the cells.

Towards SLAM Correlation of a couple of cells of two racks

- Correlation: 0.84
 - dx = 0.58m

$$dy = -2.53m$$

Towards SLAM Non-correlation of a couple of cells of two racks

Towards SLAM Global correlation between two racks (ex: n17 and n8)

These figures are obtained by correlation of the cells.

Towards SLAM Formalism

Inter-temporal measurement in SLAM:

$$\mathbf{x}(t_1) + \mathbf{d}_{1,2} = \mathbf{x}(t_2)$$

 $\dot{\mathbf{x}}(t) = \mathbf{v}(t)$

Set-membership approach:

$$\mathbf{x}(\cdot) \in [\mathbf{x}](\cdot), \mathbf{v}(\cdot) \in [\mathbf{v}](\cdot)$$
$$t_1 \in [t_1], t_2 \in [t_2]$$
$$\mathbf{d}_{1,2} \in [\mathbf{d}_{1,2}]$$

Towards SLAM Deadreckoning

Initial tube before SLAM (inertial/DVL odometry + GNSS fixes).

220003000	140	00 150	00 1	6000 1	7000	18000	19000	20000	²¹⁰⁰⁰ dim 0
21500									
21000									
20500									
20000									
19500									
19000									
18500									
18000									
17500									
17000									
16500									
10000									
16000									
15500									
15000									
10000									
14500									
14000									
13500									
13000									
dim 1									

Tubes thickness along time: width($\mathbf{x}(t)$). In gray: tubes without SLAM (deadreckoning only). In blue/red: with SLAM in x/y.

Towards SLAM Conclusion

Assets of this approach:

- reliable localization, whatever the roughness/similarities of the seabed
- Iocalization method efficient even over flat seabeds

Remaining points to investigate:

- need to automatically "clean" the MBES data before the correlation step
- online SLAM?

Towards SLAM Conclusion

todo: Build the final DEM of the Roscanvel Baie.

Towards SLAM Conclusion

todo: Build the final DEM of the Roscanvel Baie.

Section 9

Appendix

Tubes: computer representation

Implementation **enclosing** $[x^-(\cdot),x^+(\cdot)]$ inside an interval of step functions $[\underline{x^-}(\cdot),\overline{x^+}(\cdot)]$ such that:

tube implementation with a set of boxes – this outer representation adds pessimism but enables guaranteed and simple computations

Tubes integral: implementation

Outer approximation of the integral computed by:

blue area: outer approximation of the lower bound of the tube's integral

Reliable approximation of absolute speed $\mathbf{v}^*(\cdot)$

Robot sensors for **absolute speed computation**:

- velocity sensor (DVL)
- inertial measurement unit

Reliable approximation of absolute speed $\mathbf{v}^*(\cdot)$

Robot sensors for absolute speed computation:

- velocity sensor (DVL)
- inertial measurement unit

Uncertainties:

 \blacktriangleright datasheets \implies standard deviation σ for each sensor

Reliable approximation of absolute speed $\mathbf{v}^*(\cdot)$

Robot sensors for absolute speed computation:

- velocity sensor (DVL)
- inertial measurement unit

Uncertainties:

- \blacktriangleright datasheets \implies standard deviation σ for each sensor
- ▶ 95% confidence rate: $v_1^* \in [v_1] = [v_1 2\sigma, v_1 + 2\sigma]$

Reliable approximation of absolute speed $\mathbf{v}^*(\cdot)$

Robot sensors for absolute speed computation:

- velocity sensor (DVL)
- inertial measurement unit

Uncertainties:

- \blacktriangleright datasheets \implies standard deviation σ for each sensor
- ▶ 95% confidence rate: $v_1^* \in [v_1] = [v_1 2\sigma, v_1 + 2\sigma]$

uncertainties propagated thanks to interval arithmetic