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SIP
Find

f ∗ := min
x

f (x) s.t. g(x , y) ≤ 0, ∀y ∈ Y

where Y is infinite.

Example :

g(x , y) = cos(y)x1+sin(y)x2−1

Y = [0,2π]



A SIP problem is equivalent to a NLP problem with a max
inequality constraint :

SIP (min-max formulation)

Find
f ∗ := min

x
f (x) s.t. g∗(x) ≤ 0

with
g∗(x) = max

y∈Y
g(x , y).



The SIP strategy presented here is not a branch & prune
strategy.

It is an iterative scheme that calculates a sequence of lower
bounds (f−) and upper bounds (f+ and argmin) until

f+ − f− < εf .

However, it resorts to a global NLP solver at each iteration.

We assume the precision εNLP of the NLP solver satisfies

εNLP � εf .



In our graphical examples, for each y , we assume that g(x , y)
is the signed distance between x and g(., y) = 0.

The iteration is based on a discretization of Y noted YD that is
populated during solving.
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Lower bounding is based on a technique by Blakenship which :
1. run the NLP solver to minimize f with y ∈ YD

2. update the lower bound f− (if better)
3. add into YD the value of y that maximizes the violation at

the point found.





LBD problem

fLBD := min
x

f (x) s.t. g(x , y) ≤ 0, ∀y ∈ YD



LLP problem

gLLP := max
y∈Y

g(x , y)









Note : If
g−LLP < 0 < g+

LLP

nothing can be done and the LLP problem will have to be
solved again for xLBD, with a higher accuracy.

However, not immediatly (an upper bounding step is performed
first). We cannot loop because g∗(xLBD) may actually be
arbitrarily close to 0.

The precision of the NLP solver when solving LLP cannot be
set a priori : the sequence of g∗(xLBD) is not monotonic and it
would anyway require sensitivity analysis at the optimum.



The convergence of fLBD to the expected value (i.e., f ∗ − εf or
greater) is not straightfoward.

If we denote by xk the sequence of points xLBD, then either xk
turns to be SIP-feasible for one k and it’s done, or we have to
prove that

g∗(xk )→ 0.

which is not true in general. Some compacity/continuity
assumptions are required.

Note that the sequence g∗(xk ) is not necessarily monotonously
decreasing, in any case.



The main argument behind the proof is the following :

If we denote yk the argmax of the (first) LLP problem
successfully solved for xk then

g(xk , yk ) > 0 (1)

and, by construction,

∀k , ∀l > k , g(xl , yk ) ≤ 0. (2)

If we now assume that the domain for x is compact, we can
extract a converging sub-sequence of xk . And if we further
assume that g is uniformly continuous, we can then deduce
from (1) and (2) that

g(xk , yk )→ 0

which means that the limit point xk is SIP-feasible.



So Y has to be populated in a specific way.

Otherwise, convergence is lost.
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The principle is to consider a restriction of the relaxation.

UBD problem

fUBD := min
x

f (x) s.t. g(x , y) ≤ −εg , ∀y ∈ YD

The idea is to get an upper bound of f ∗ of the required
precision, by decreasing εg and populating Y.



The difficulty is that :
I for a fixed εg we deteriorate the criterion by populating Y
I for a fixed Y we may lose the SIP-feasibility by decreasing
εg .

Still, if we keep on decreasing εg and populating Y (in the
appropriate way) the process eventually succeed.



More precisely, a strategy proven to converge is the following.

I We solve the UBD program for a given εg and Y and obtain
xUBD.

I If it is infeasible, εg is decreased.
I Otherwise, we solve the LLP program for xUBD.

I if g+
LLP ≤ 0, xUBD is SIP-feasible, f+ is updated and εg is

decreased
I otherwise we add y∗

LLP in Y

Note : Contrary to LBD, the precision εLLP required for LLP can
be fixed here a priori to any value < εg (we don’t need to
handle the case g−LLP < 0 < g+

LLP) !



However, the sequence of valid upper bounds is not
monotonous (and, contrary to LBD, this is regardless of the
precision of the NLP solver).

Convergence is even less trivial and requires an additionnal
assumption (existence of a Slater point).



Like before, we don’t know a priori the final value of εg for a
given εf .

In practice, we are faced to the following dilemma :
I Decreasing εg too slowly leads to poor convergence of the

overwhole iteration
I Decreasing εg too quickly leads to a dense popuation of Y

and a lack of upper bounds
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The oracle problem allows to boost convergence.

The key idea is to fix a guess fORA for the objective, e.g. :

fORA =
1
2

(
fLBD + fUBD)

and to look for the point x that minimizes the violation η of the
constraints inside the current discretization Y while satisfying

f (x) ≤ fORA.

ORA problem

fORA := min
x ,η

η s.t.
{

f (x) ≤ fORA
g(x , y) ≤ η, ∀y ∈ YD



ORA problem

fORA := min
x ,η

η s.t.
{

f (x) ≤ fORA
g(x , y) ≤ η, ∀y ∈ YD

I If the minimum η∗ is positive, fORA is a valid lower bound !
I If the minimum η∗ is negative and xORA is SIP-feasible,

then fORA is a valid upper bound.
I Better, in case of SIP-feasibility, εg of UBD can be set η∗

Note : solving UBD with εg = η∗ can give a better bound than
fORA, at least in theory.
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The Blankenship approach replaces the SIP problem by a
sequence of (increasingly strengthened) relaxations.

This approach could also be used as such for upper bounding
as it eventually provides SIP-feasible points (in general).
Indeed, looking for the argmin of UBD already introduces a
restriction of the relaxation.

But this strategy would over-populate Y.

The Mitsos upper-bouding strategy alleviates this phenomenon
by over-restricting the relaxation.

The oracle introduces a dichotomic principle in this approach.
But the dimension of the subproblem is increased.



Thanks !
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