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The SLAM problem



Loop closure with ground perception
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Robot exploring an environment...

coming back to a previous position...
detecting loop closure... correcting its trajectory.
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Loop closure with ground perception
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Problem: doubtful loops and similar environments

What if we recognize a wrong scene?
– homogeneous environments =⇒ similar observations
– strong positioning drift =⇒ false loop detections

tube enclosing
feasible trajectories

Doubtful loop: the actual trajectory did not loop, but the evolution
uncertainties and the homogeneity of the environment may lead to an incorrect
correction.

=⇒ significant impact on the next SLAM iterations.
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Uncertainties: detection vs verification

Uncertain trajectories are enclosed by tubes.

p1

p2

Detectable
loop

Detectable and
verifiable loop

Only 1 loop can be verified – at least 2 feasible loops are detected.

Need for loop proof:

– verify that a trajectory crosses itself at some point
– ..whatever the uncertainties describing this trajectory
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Set of feasible loops



Definitions (Aubry, 2013)

– robot position: p = (x , y)⊺ ∈ R2

– 2D robot trajectory: p(t) : R → R2, t ∈ [t0, tf ]

– looped trajectory ⇔ trajectory that crosses itself
– p(t1) = p(t2), t1 ̸= t2

– 1 loop ⇔ 1 t-pair (t1, t2)
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Definitions (Aubry, 2013)

– t-plane ⇔ all feasible t-pairs = [t0, tf ]
2

– loop set T∗:
– T∗ =

{
(t1, t2) ∈ [t0, tf ]

2 | p(t1) = p(t2), t1 < t2
}

– loop set of below example:
– T∗ = {(ta, tb), (tc , tf ), (td , te)}
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Computing loops from robot sensors

Context: robot trajectory p(t) cannot be directly sensed.
Computation from speed measurements:

p(t) =
∫ t

t0

v(τ)dτ + p0, (1)

with v(t) ∈ R2: robot velocity vector at time t ∈ [t0, tf ].

Loop-set from velocity:

T∗ =
{
(t1, t2) ∈ [t0, tf ]

2 | p∗(t1) = p∗(t2), t1 < t2
}

(2)

=

{
(t1, t2) ∈ [t0, tf ]

2 |
∫ t2

t1

v∗(τ)dτ = 0, t1 < t2

}
(3)
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Bounded-error context: T

Actual loop-set T∗ (error free):

T∗ =

{
(t1, t2) |

∫ t2

t1

v∗(τ)dτ = 0
}

(4)

Bounded-error context, assuming v∗(·) ∈ [v](·):

T =

{
(t1, t2) | ∃v(·) ∈ [v](·) ,

∫ t2

t1

v(τ)dτ = 0
}

(5)

Set-membership approach:

T∗ ⊂ T ⊂ [t0, tf ]
2 (6)
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Algorithm for detecting loops [Aubry 2013]

Using a SIVIA-like algorithm, we define the following inclusion tests:

[t1]− [t2] ⊂ R−∫ [t2]

[t1]

v−(τ)dτ ⩽ 0 ⩽
∫ [t2]

[t1]

v+(τ)dτ

 ⇒ [t] ⊂ T

[t1]− [t2] ⊂ R+

0 ̸∈
∫ [t2]

[t1]

[v](τ)dτ

 ⇒ [t] ∩ T = ∅

8/35



Example of application
www.codac.io

Computing an enclosure T of the loop set using Codac:

BoolInterval test_loop(const IntervalVector& t)
{

auto partial_integ = v.partial_integral(t[0],t[1]);

if((t[0]-t[1]).is_strict_subset({0,oo})
|| !v.integral(t[0],t[1]).interior_contains({0,0})
|| !v(t[0]|t[1]).interior_contains({0,0}))

return BoolInterval::FALSE;

else if((t[0]-t[1]).is_strict_subset({-oo,0})
&& partial_integ.first.is_strict_subset({{-oo,0},{-oo,0}})
&& partial_integ.second.is_strict_subset({{0,oo},{0,oo}}))

return BoolInterval::TRUE;

else
return BoolInterval::UNKNOWN;

}

IntervalVector T { {0,10}, {0,10} };
auto loops = regular_pave(T, test_loop, 1e-1);

9/35
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Example of application
www.codac.io
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Example of application
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Reliable approximation of a loop set

Using a SIVIA-like algorithm:

p2

p1

t2

t1

Undeniable looped trajectory
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Verifying the existence of loops



Inclusion function

Simplification:
defining the actual but unknown function f∗ : R2 → R2

f∗(t1, t2) =

∫ t2

t1

v∗(τ)dτ (7)

Assessed knowledge:
[f] : R2 → IR2 is an interval function of f∗:

f∗(t1, t2) ∈ [f](t1, t2) =

∫ t2

t1

[v](τ)dτ (8)

Verification of a loop:

∀f ∈ [f], ∃t ∈ Ti | f(t) = 0 =⇒ ∃t ∈ Ti | f∗(t) = 0︸ ︷︷ ︸
loop existence proof

(9)
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Zero verification: problem statement

Usually we cannot find exactly a zero of an uncertain function, but we
can prove it exists within some domain Ω.

Assumptions:

– known inclusion function [f] : IRn → IRm of the unknown function
f∗ : Rn → Rm

– possibly in the form of an algorithm for computing [f]([t])
– n = m = 2
– Ω possibly made of a union of finitely many boxes in IR2

−→ need to isolate and verify zeros of f∗
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Powerful topological degree

Topological degree deg(f∗,Ω):

– unique integer assigned to f∗ and a compact set Ω ⊂ Rn such that
f∗(t) ̸= 0 for all t ∈ ∂Ω

Most important property of it:

deg(f∗,Ω) ̸= 0 =⇒ ∃t ∈ Ω | f∗(t) = 0 (10)

■ Topological degree theory and applications
Y. J. Cho, Y. Q. Chen Mathematical Analysis and Applications, 2006

■ Degree theory in analysis and applications
I. Fonseca, W. Gangbo Oxford lecture series, 1995

■ A set of axioms for the degree of a tangent vector field on differentiable manifolds
M. Furi, M. P. Pera, M. Spadini Fixed Point Theory and Applications, 2010
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Powerful topological degree

Assets of topological degree:

– can be computed in case where only an inclusion function [f]
of f∗ is given.

■ Effective topological degree computation based on interval arithmetic
P. Franek, S. Ratschan CoRR, 2012

– is in many cases more powerful than more classical verification tools
including interval Newton, Miranda’s or Borsuk’s tests.

■ Quasi-decidability of a fragment of the first-order theory of real numbers
P. Franek, S. Ratschan, P. Zgliczynski Journal of Automated Reasoning, 2015

– useful to count the number of 0.
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Powerful topological degree

Our application for loop detection:

– deals with the relatively easy case n = 2 (t1, t2)

– nice geometric interpretation

:
– winding number of the curve ∂Ω

f∗→ R2 \ {0} around 0

t1

t2

Ω ∂Ω

f∗

deg = 0 deg = 1 deg = 2 deg = 3
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Outer approximation of a set T with SIVIA

Consider T ⊂ R2 in which we want to find zeros of f∗.

T1

T2

t1

t2

Outer set has the properties required for Ω: f∗(t) ̸= 0, ∀t ∈ ∂Ω
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Verifying loops on actual
datasets



Enclosed velocities

Tube [v](·) built from sensor data:
(DVL for velocity + AHRS for attitude)
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Redermor’s mission

Guaranteed enclosure of the trajectory:
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Tube [p](·) enclosing the feasible trajectories of Redermor AUV. 19/35



t-plane of the mission: T = {(t1, t2) | 0 ∈ [f](t1, t2), t1 < t2}

t2 (s)

t1 (s)

existence
not proven

0 6000

6000

t-plane corresponding to Redermor’s mission.
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Redermor’s mission: overview and results
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Loop proof number

Without uncertainties:

λ∗ = #
{

t | f∗(t) = 0, t1 < t2
}

(11)

Results:

Newton operator test: λN = 14
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Another experiment: Daurade’s mission

-600 -500 -400 -300 -200 -100 0 100

-100

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

p1

p2

p(t0)p(tf )

existence
not proven

0 1000 2000 3000 4000 50000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

t1

t2

-150 -100 -50 0 50 100-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

p1

p2

p(t−1 )
p(t+1 )

p(t−2 )

p(t+2 )

22/35



Another experiment: Daurade’s mission

-600 -500 -400 -300 -200 -100 0 100

-100

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

p1

p2

p(t0)p(tf )

existence
not proven

100 200 300 400 500 600 700 800 900 1000 1100 12002500

2600

2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

t1

t2

existence
not proven

-150 -100 -50 0 50 100-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

p1

p2

p(t−1 )
p(t+1 )

p(t−2 )

p(t+2 )

22/35



Another experiment: Daurade’s mission

-600 -500 -400 -300 -200 -100 0 100

-100

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

p1

p2

p(t0)p(tf )

existence
not proven

-150 -100 -50 0 50 100-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

p1

p2

p(t−1 )
p(t+1 )

p(t−2 )

p(t+2 )

22/35



Proving loops: conclusion

Loop proof ⇔ verified existence of a 0 of an uncertain function:

– context where the exact values of the function are not known
– have to deal with a reliable approximation of it

Topological degree theory:

– well suited in this case
– applied in a 2d context

– optimal results

Proving the existence of loops in robot trajectories
The International Journal of Robotics Research, 2018
Simon Rohou, Peter Franek, Clément Aubry, Luc Jaulin
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Robot localization



Ground observations: crossing acquisitions

Goal: use bathymetric information for localization purposes

Crossed acquisition tracks (looped trajectories), in case of positioning drift.
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Correlation of two ground observations
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Non-correlation of two ground observations
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Localization: constraint programming approach

State estimation associated with one loop.
One t-pair (t̃1, t̃2) is selected randomly in a verified loop-set Ti .

Decomposition

– Variables:

– p(·), v(·) ∈ [t0, tf ] → R2

– d ∈ R2

– (t̃1, t̃2) ∈ R2

– Constraints:

– ṗ(t) = v(t)
– p(t̃1) + d = p(t̃2)

– q2 = p(t̃2)

– d = q2 − q1

– Interval domains:

– [p](·), [v](·) ∈ [t0, tf ] → IR2

– [d], [q1], [q2] ∈ IR2

– Contractors:

– Cderiv ([p](·), [v](·))
– Ceval (t̃1, [q1], [p](·))
– Ceval (t̃2, [q2], [p](·))
– C− ([q2], [q1], [d])
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Example of application
www.codac.io

Possible implementation of the SLAM algorithm:

Append to a new contractor network:
– Cderiv([p](·), [v](·))

While fixpoint is not reached:

( ⇔ while new loops are verified):

– compute/update loop-sets T from [p](·), [v](·)

– for each connected subset Ti of T
– if zero verification on Ti :

– select (t̃1, t̃2) ∈ Ti

– init [q2]← [−∞,∞]2, [q1]← [−∞,∞]2

– compute bounded correlation [d] between g(x̂(t̃1)), g(x̂(t̃2))

Append to a contractor network:
– C− ([d], [q2], [q1])

– Ceval(t̃1, [q1], [p](·), [v](·))
– Ceval(t̃2, [q2], [p](·), [v](·))

Propagate contractions in the contractor network.
28/35

www.codac.io


Example of application
www.codac.io

Possible implementation of the SLAM algorithm:

Append to a new contractor network:
– Cderiv([p](·), [v](·))

While fixpoint is not reached

:

( ⇔ while new loops are verified):
– compute/update loop-sets T from [p](·), [v](·)

– for each connected subset Ti of T
– if zero verification on Ti :

– select (t̃1, t̃2) ∈ Ti

– init [q2]← [−∞,∞]2, [q1]← [−∞,∞]2

– compute bounded correlation [d] between g(x̂(t̃1)), g(x̂(t̃2))

Append to a contractor network:
– C− ([d], [q2], [q1])

– Ceval(t̃1, [q1], [p](·), [v](·))
– Ceval(t̃2, [q2], [p](·), [v](·))

Propagate contractions in the contractor network.
28/35

www.codac.io


Experiment in the "Rade de Brest" (Boustrophédon)

Multi-boustrophedon pattern (actual trajectory performed by Daurade).
Red points are surface positions.
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Deadreckoning

Enclosure of trajectories without external measurements:

Initial tube [p](·) before SLAM (inertial/DVL odometry + GNSS fixes).
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t-plane of the mission (loops summary)

Computed t-plane [0, tmax]
2 – hundreds of loops are detected.
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SLAM results

Contracted enclosure of the feasible trajectories,
with external measurements (seafloor perceptions):

Final tube [p](·) after SLAM.
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SLAM results

Tubes thickness along time: width([p](t)).
––– in gray: tubes without SLAM (deadreckoning only = significant drift)

– in blue/red: with SLAM in p1/p2
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t-plane of the mission (iterative computations)

The associated t-plane is iteratively contracted with respect to
improvements on [p](t):

Computed t-plane [0, tmax]
2 – revealing old loop sets boundaries. 34/35
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Conclusion and perspectives

Assets of this approach:

– analyzing ground textures is efficient even over flat seabeds,
or during strong tidal changes

– but requires reliable localization, whatever:
– the ground ambiguities/similarities
– the uncertainties on loops

Future work:

– online SLAM!
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Thank you!
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